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ABSTRACT: In this paper we describe a series of algorithms that generate real-valued attributes used to classify tactical 
situations using an unsupervised machine learning system. Attributes for the classification of tactical situations include anc-
hored and unanchored flanks, choke points, restricted avenues of attack and retreat, and interior line of support. 

 

1. Introduction. 
Our research in Computational Military Tactical Planning 
(as introduced by Kewley and Embrechts[1]) suggests that, 
an unsupervised machine learning system (like Gennari and 
Langley’s ClassIT [2]) can make reasoned inferences about 
previously unseen tactical situations. What is required is an 
appropriate set of attributes or features that describe signif-
icant aspects of a tactical situation and a sufficiently large 
database of tactical situations. We surveyed 14 Subject 
Matter Experts (SMEs) and found consistent agreement 
regarding the presence of, and the ability to identify by 
SMEs, certain attributes in specific tactical situations, e.g., 
Anchored Flanks, Interior Lines of Support and Restricted 
Avenues of Attack and Retreat [3]. We agree with Cheese-
man and Stutz that, “a strong interaction between the dis-
covery program and the expert will be the common pattern 
in Knowledge Discovery in Databases (KDD) for the fore-
seeable future, because each have complementary 
strengths.” [4] We are also in agreement with Fisher who 
states that, “conceptual clustering classification schemes 
can be a basis for effective inference of unseen object prop-
erties.” [5] 

We have previously published a series of algorithms 
employed in our TIGER (Tactical Inference Generator) 
test-bed program that are the ‘building blocks’ of the algo-
rithms presented in this paper [6]. In TIGER, a tactical situ-
ation is described as two sets of opposing forces (REDFOR 
and BLUEFOR) within a set of two dimensional matrices 
that represent terrain, elevation and topography.1 Units 
have a Range of Influence (ROI) that is defined by the unit 
type, terrain and line of sight [6]. Unit formations are 
represented by minimum spanning trees (MSTs) that 
                                                                 
1 Because the authors did not have access to DTED format terrain 

and elevation files, we commissioned a third-party to produce 
elevation, terrain and topography maps from public domain 
sources including the West Point Atlas of American Wars [7, 
15].  

groups units into self-supporting formations [8]. The 
TIGER function FindPath2, based on A* search, is a least-
weighted path algorithm that can incorporate ROI, as well 
as terrain and slope, into its calculations [9]. TIGER as-
sumes that REDFOR are on the defensive and BLUEFOR 
is attacking.  

The ClassIT algorithm uses category utility to compute 
the conditional probability (or predictability) of incorporat-
ing an instance (or in our implementation, a tactical situa-
tion) into a class [2]. The result is a clustering of instances 
into like classes. 

2. The Anchored Flank Algorithm 
We use the following generally accepted terms: 

• Flank - either end of a mobile or fortified military posi-
tion. 

• Anchored (or Refused) Flank - a flank that is attached 
to or protected by terrain, a body of water, or defended 
fortifications. 

• Unanchored (or Open) Flank - a flank that is not pro-
tected; also said to be "in the air [10].” 

There was consistent agreement among our surveyed 
SMEs [3] that the attribute of ‘anchored flanks’ was present 
at certain Civil War battles when they were shown the ca-
nonical maps from the West Point Atlas: Antietam (Confe-
derate right and left flanks), Chancellorsville (Union left 
flank), and Fredericksburg (Confederate left flank) [7]. 

In TIGER, the flanks of a line (or the flanking units of 
a line) are defined as the two maximally separated units in 

                                                                 
2 FindPath(u, G, B, o, W) returns an optimal path from unit u’s 

current position, given G a collection of “gap edges”, B a col-
lection of “barrier edges” to o, which is an objective, given as a 
location in graph coordinates and W is the unit u’s world view. 
A solution path produced by FindPath must traverse at least 
one of the edges given in G and none of the edges in B. The al-
gorithm was previously introduced in [6]. 



 

the MST defining a group of units).3 A prerequisite for a 
line with anchored flanks (or an anchored line) is that there 
must not be any ‘gaps’ in the line; that is to say, that an 
anchored line must consist of a series of supporting units 
that have overlapping ROI, or fields of fire [6]. Therefore, 
an attacking (BLUEFOR) unit cannot navigate a path from 
its current position to an appropriately selected point be-
hind an anchored line without crossing through an ROI of a 
different color. 

 
 

In informal terms our algorithm for determining the 
presence of anchored flanks is as follows. First, determine 
the spine of the MST group (see Figure 1) which is the 
unique path on the edges of the MST from one flank unit to 
the other flank unit. Second, determine if the spine tra-
verses an uninterrupted line of ROIs that reach from one 
flank unit to the opposite flank unit. Next, locate an objec-
tive point that places the spine between the objective point 
and BLUEFOR units (see Figure 1).  

If a legal path can be traced from any BLUEFOR unit 
to the objective point without passing through an ROI then 
at least one flank is unanchored. If no legal path can be 
found from any BLUEFOR unit to the objective point 
without passing through an ROI then both flanks are anc-
hored. The ratio of the number of BLUEFOR units that had 
to cross through a REDFOR ROI over the total number of 
BLUEFOR units serves as a measure for the ‘flanking 
attribute’ employed by our classification system. 

                                                                 
3 Maximally separated can be determined by Euclidean distance, 

time of travel, or by any other metric that can be used as an edge 
weight. TIGER uses travel cost as determined by the unit type 
indexed to terrain type and modified by the cost of the unit type 
traversing the slope of the elevation. NB: The cost of a flank 
unit to travel to the opposite flank unit may not be (and rarely 
is) symmetrical. This is because the two flank units may be of 
different unit types, may traverse different slopes, terrains, etc.  

In addition to this ‘flanking attribute’ metric this algo-
rithm also produces several additional useful attributes, in 
particular, whether the REDFOR line consists of an unbro-
ken chain of ROI, whether BLUEFOR units must cross 
REDFOR ROI to reach the selected flanking objective 
point, and a ratio of compromised to uncompromised 
BLUEFOR units. 

 

Algorithm for FlankingAttributeValue Function   
// Determine if R, a set of REDFOR units, has anchored 
// flanks given B, a set of BLUEFOR units. D is a distance 
// threshold. W is the ‘world view’ used by FindPath.   
// Matrices that represent terrain and elevation maps are 
// global. Returns V, a real-valued attribute suitable for use 
// within the ClassIT system. 
 
FlankingAttributeValue (R, B, D, W)  
{  

// Calculate the MSTs for REDFOR and BLUEFOR 
B_MST ComputeGroupsByThreshold(B,W,D)4 
R_MST ComputeGroupsByNumber (R, 1)5  
 
// Calculate ROI for REDFOR 
R_ROI  CalculateROI(R)6 

 
 // Find left and right flanks of REDFOR 
       l  CalculateLeftFlank(R)7 
       r  CalculateRightFlank(R) 
 

// Determine MST spine of R  
R_Spine  PlotMSTspine(R,l, r) 
 
// Determine the center8of REDFOR 
R_Center  CalculateCenter(R)9 

 
// Keep a count of how many BLUEFOR units 
// have a legal path free of R_ROI to their 
// respective objectives; initialize counter 

                                                                 
4 This function groups units of the same color returning a forest of 

minimum spanning trees separated at least by distance threshold 
D and based on the current world view, W, which includes, e.g. 
line of sight, terrain considerations, etc.(see [6]). 

5 This function groups units of the same color into a fixed number 
of N subgroups using edge weighting or distance; see [6]. Since 
we specify only one group here, the function simply computes 
the REDFOR MST. 

6 Given a set of units and ROI values for each unit type the func-
tion maps the ROI into a two-dimensional matrix. 

7 The algorithm for this function was published in [6]. This func-
tion returns the respective flanks (maximally separated units) 
within a group, or MST. 

8 The center of a group of units is the sum of the unit locations 
weighted by unit’s type strength modifier multiplied by the 
unit’s strength. 

9 The algorithm for this function was published in [6]. 

Figure 1. TIGER screen shot of ‘flanking attribute’ calculations
for the battle of Antietam (September 17, 1862, 0600 hours). Note
the thick black line that represents the MST spine of REDFOR
Group 0, the extended vectors that calculate the Flanking Goal
Objective Point and BLUEFOR and REDFOR ROI (red and blue
shading). REDFOR (Confederate) has anchored flanks. 



 

N  0 
 
// For each BLUEFOR group, represented by an 
// MST in the forest of BLUE MSTs 
for each BGm in B_MST 
 
 // Calculate center of this BLUEFOR group 

B_Center  CalculateCenter(BGm) 
 

// Find first REDFOR ROI-free objective 
// beyond the MST spine of R (R_Spine) 
// along the ray from B_Center to R_Center 
o  FindOpenPoint(B_Center, R_Center, 

R_Spine, R_ROI) 
 

// For each unit in this group see if a legal path 
// exists to the objective point o 
for each u in BGm 
 if (FindPath(u,׎,R_ROI,o,W)) 
  N  N + 1 

 
// Return the ratio of  the number of BLUEFOR 
// units with R_ROI clear paths to their respecrive 
// objectives to the total number of BLUEFOR unts 
return (N / |B| ) 
} 

 

 

 
3. The Interior Line Algorithm 
We use the following generally accepted terms: 

Interior Lines – The military circumstance of either 
being able to move over a shorter distance to execute 
maneuvers and effect reinforcements than the enemy 
or possessing a more efficient transportation method or 
faster units than the enemy. 
Interior Lines are defined relative to those of the 
enemy; consequently they can be categorized as either 
interior (shorter distance between flanks than the dis-

tance between the enemy’s flanks) or exterior (greater 
distance between flanks than the enemy’s flanks [12]. 
There was consistent agreement among our surveyed 

SMEs that the attribute of ‘interior lines’ was present at 
certain Civil War battles when they were shown the canon-
ical maps from the West Point Atlas of Chancellorsville 
(Confederate), Antietam (Confederate), Gettysburg (Union) 
and Wilderness(Union) [3,7]. 

In informal terms our algorithm for determining the 
presence of interior lines is as follows: First, find the left 
and right flank units for REDFOR and BLUEFOR groups. 
Next, find the least weighted path between the flank units 
of each group using FindPath (checking in both directions 
because the costs are not symmetrical due to different unit 
types, terrains, slopes, etc.). Last, subtract the smallest cost 
(returned by FindPath) for BLUEFOR from the smallest 
cost (returned by FindPath) for REDFOR. 

 
Algorithm for InteriorLinesValue Function  

// Determine if R, a set of REDFOR units, or B, a set of 
// BLUEFOR units, has the attribute of interior lines and 
// return a real-valued attribute suitable for use within the 
// ClassIT system. W is the ‘world view’ used by FindPath.  
 
InteriorLinesValue (B, R, W)  
{  
 // Find left and right flanks of REDFOR 

l  CalculateLeftFlank(R) 
r  CalculateRightFlank(R) 
 
// Calculate ROI for BLUEFOR 
B_ROI  CalculateROI(B) 
 
// Find the path with the least cost between l and r  
// (check both directions), store in B_Path 
B_Path  Min ( FindPath (l, ׎, R_ROI, r, W),  

FindPath (r, ׎, R_ROI, l, W))  
 
// Find left and right flanks of BLUEFOR 
l  CalculateLeftFlank(B) 
r  CalculateRightFlank(B) 
 
// Calculate ROI for REDFOR 
R_ROI  CalculateROI(B) 

 
// Find the path with the least cost between l and r  
// (check both directions), store in R_PATH 
R_Path  Min(  FindPath (l, ׎, B_ROI, r, W), 

FindPath (r, ׎, B_ROI, l, W))  
 
// Subtract the minimum REDFOR path from the 
// minimum BLUEFOR path and return the Interior  
// Line metric 
return(B_Path - R_Path) 

} 

Figure 2. Example of MST Spine being calculated across all 
REDFOR groups at the battle of Waterloo (June 18, 1815, 1600 

hours). Note: REDFOR (Anglo-Allies) have two groups; Group 1 
in the east is the Prussian forces. TIGER screen shot. 



 

If the value returned is greater than zero, then 
BLUEFOR has interior lines. If the value returned is less 
than zero, then REDFOR has interior lines. The greater the 
absolute value of the metric, the larger the disparity be-
tween interior and exterior lines. 

 

 

 
4. Restricted Avenue of Attack and Restricted Avenue 
of Retreat Algorithms. 
We use the following generally accepted terms: 

• Avenue of Approach also Avenue of Attack – A 
ground route of an attacking force of a given size 
leading to its objective or to key terrain in its path 
[13]. 

• Avenue of Retreat – the ground route of a retreat-
ing defending force. 

• Choke Point - A choke point is a geographical 
feature on land such as a valley or defile which an 
armed force is forced to pass, sometimes on a sub-
stantially narrower front, and therefore greatly de-
creasing its combat power, in order to reach its ob-
jective [14]. 

There was consistent agreement among our surveyed 
SMEs that the attribute of ‘restricted avenues of retreat’ 
and/or ‘restricted avenues of attack’ were present at certain 
Civil War battles when they were shown the canonical 
maps from the West Point Atlas: Chancellorsville (Union), 
Antietam (Confederate), Fredericksburg (Union) and Kas-
serine Pass (Allied and Axis) [3, 7, 15]. 

The point (C) that REDFOR wishes to retreat to re-
quires a priori knowledge of the strategic situation which is 
beyond the scope of the tactical ‘snapshot’ that is presented 
to TIGER for analysis. Consequently, C, is set by an SME 
(see Figure 4 for an example where C has been set as a 
point on the southern bank of the Potomac River that the 
Confederate army must pass through during a retreat to its 
strategic base in Virginia). 

 In informal terms our algorithm for determining the 
presence of Restricted Avenues of Retreat for REDFOR is 

as follows: an SME, using TIGER, sets the REDFOR Re-
treat Choke Point Goal (C) and TIGER calculates the 
BLUEFOR ROI. Next, for each group in REDFOR, or until 
FindPath returns failure, find a path from the center of the 
group to C that is completely disjoint from previous 
REDFOR retreat paths. The value returned, the REDFOR 
Chokepoint Value (RC), corresponds roughly to a notion of 
“bandwidth” to a single objective, the Choke Point Goal. 
Since we are operating on a map with an overlayed square 
grid, the number of disjoint access paths to a single 
objective point is an integer between 0 and 8, inclusive. 
Thus the RC, defined as: 

ܥܴ ൌ
1

2ሺN୳୫ୠୣ୰C୦୭୩ୣP୭୧୬୲ୱ – ଵሻ 
is a number in the range [0.007813,1.0], where a smaller 
number  means REDFOR has more avenues of retreat, and 
a value of 1.0 means REDFOR has only a single avenue of 
retreat (see Figure 4, below, for an example of RC = 1.0). 

 

 
 
Algorithm for AvenuesOfRetreatValue Function  

// Given R, a set of REDFOR units and B, a set of 
// BLUEFOR units, calculate the number of choke points 
// between R and the Choke Point Goal (C) and 
// return a real-valued attribute suitable for use  
// within the ClassIT system. W is the ‘world view 
// used by FindPath. D is a distance threshold. 
 
AvenuesOfRetreatValue (B, R, C, W, D)  
{  

// BARRIER is initialized to hold BLUEFOR ROI 
BARRIER  CalculateROI(B) 
 
// Initialize N, the NumberofChokePoints 
N  0 

 
// Calculate the MSTs for REDFOR 
R_MST  ComputeGroupsByThreshold(R,W, D) 

Figure 4. Example of REDFOR (Confederates) having a Restricted 
Avenue of Retreat (marked by thick red line from Red Group 0 to 
lower right hand corner of map) at the battle of Antietam (Septem-
ber 17, 1862, 0600 hours). REDFOR has only one avenue of retreat 
across the Potomac to C, the Choke Point goal. TIGER screen shot.

Figure 3. Example of REDFOR (Union) having Interior Lines at 
the battle of Gettysburg (July 3, 1863, 0600 hours). Note: TIGER 

displays defending forces as REDFOR. TIGER screen shot. 



 

 
// For each REDFOR group, represented by an 
// MST in the forest of REDFOR MSTs 
for each RGm in R_MST 
 
 
 // Calculate center of this REDFOR group 

R_Center  CalculateCenter(RGm) 
 
while(P  FindPath(R_Center,׎,BARRIER,C, 

W)) 
N  N+1 

 
BARRIER  BARRIER ׫ P 

 
// Return the REDFOR Chokepoint Value  
return(1 / Power (2,N-1)) 

} 

The algorithm for determining the presence of Re-
stricted Avenues of Attack for BLUEFOR is identical to 
the algorithm for determining the presence of Restricted 
Avenues of Retreat except that FindPath is called without 
using enemy ROI and that the Choke Point Goal (C) is not 
set by an SME; rather C is set as the center of REDFOR. 

 

 
 

Algorithm for AvenuesOfAttackValue Function  
// Given R, a set of REDFOR units and B, a set of 
// BLUEFOR units, calculate the number of choke points 
// between B and the Choke Point Goal (C) and 
// return a real-valued attribute suitable for use  
// within the ClassIT system. W is the ‘world view’ 
// used by FindPath. D is a distance threshold. 
 
AvenuesOfAttackValue (B, R, C, W, D)  
{  

// Determine the center of REDFOR 

R_Center  CalculateCenter(R) 
 

// Initialize N, the NumberofChokePoints 
N  0 

 
 

// BARRIER is initialized empty 
BARRIER  ׎ 
 
// Calculate the MSTs for BLUEFOR 
B_MST  ComputeGroupsByThreshold(B,W, D) 

 
// For each BLUEFOR group, represented by an 
// MST in the forest of BLUEFOR MSTs 
for each BGm in B_MST 

 
 // Calculate center of this BLUEFOR group 

B_Center  CalculateCenter(BGm) 
 

while(P  FindPath(B_Center,׎,BARRIER, 
R_Center,W)) 

N  N+1 
 

BARRIER  BARRIER ׫ P 
 

// Return the BLUEFOR Chokepoint Value  
return (1 / Power (2,N-1)) 

} 

 

 

 
4. Results 
We present, below, the results of running the above four 
algorithms on fifteen historical tactical situations taken 
from the West Point Atlas. [7, 15]  

Figure 6. Example of BLUEFOR (Axis) having Restricted Ave-
nues of Attack (marked by thick blue lines) at the battle of Kasse-

rine Pass, February 14, 1943). Note that the black areas have great-
er slopes than the unit type (armor in this case) allows for transit. 
Also, note that the slope restrictions are calculated as part of the 

FindPath function and, consequently are calculated only on an ‘as 
need’ basis. Mountain ranges to the west were not considered by 

the function and, therefore, their slopes are not marked as impassa-
ble. TIGER screen shot. 

Figure 5. Example of BLUEFOR (Union) having Restricted Ave-
nues of Attack (marked by thick blue lines from Blue Group 0 and 
Blue Group 1 across the Rappahannock River via pontoon bridges) 
at the battle of Fredericksburg (December 10, 1862, 0600 hours). 

TIGER screen shot. 



 

Table 1 displays the values returned by our Interior 
Line Value algorithm (3, above). Negative numbers indi-
cate the presence of ‘interior lines’; positive numbers indi-
cate the presence of ‘exterior lines’, or the condition of the 
attacker having shorter lines. The Union defensive line on 
the third day of the battle of Gettysburg returned the lowest 
value (-231,487). This was to be expected as this is the 
famous ‘fish hook’ defensive line; indeed it is the canonical 
example of an ‘interior line’. The Confederate defensive 
line at Antietam, which was also identified by our surveyed 
SMEs as an example of an interior line, also returns a nega-
tive number; though it clearly does not exhibit the condi-
tion of ‘interior lines’ as severely as the Union line on the 
third day of Gettysburg. 

Table 2 displays the values returned by our Anchored 
Flank Algorithm (2, above). The value zero indicates that 
both flanks are ‘open’ or unanchored and the value one 
indicates that both flanks are anchored. The Confederate 
lines at Antietam and Fredericksburg were both identified 
by our surveyed SMEs as an example of anchored flanks 
and our results are in agreement with the SME analysis. 

Table 3 displays the values returned by our Restricted 
Avenues of Retreat algorithm (4, above). The Confederate 
position at Antietam was identified by our surveyed SMEs 
as an example of a Restricted Avenue of Retreat and our 
results are in agreement with the SME analysis (Figure 4 
clearly shows the one Avenue of Retreat available to the 
Confederates at Antietam). 

Table 4 displays the values returned by our Restricted 
Avenues of Attack algorithm (4, above). The Union posi-
tion at Fredericksburg (in which the Union forces had to 
cross pontoon bridges to attack) and the German positions 
at Kasserine Pass (where the Germans had to maneuver 
through mountain passes to attack) were identified by our 
surveyed SMEs as an example of a Restricted Avenue of 
Attack or Approach and our results are in agreement with 
the SME analysis. Figures 5 and 6 clearly show the Re-
stricted Avenues of Attack identified by TIGER. 

 
Table 1. Interior Line Values returned by TIGER analy-
sis of 15 tactical situations from the West Point Atlas. 

Tactical Situation: Value: 

Gettysburg, July 3, 1863; 1200 hours  -231497 

Lake Trasimene, 217 BCE  -115079 

Waterloo June 18; Counterattack 1930 hours -94884 

Gettysburg, July 1, 1863; 14:30 hours -92279 

Gazala, Libya, 27 May 1942 -92273 

Antietam, September 17, 1862; 0600 hours -54097 

Kasserine Pass, February 14, 1943 -19347 

Shiloh, April 6, 1862; 1200 hours 12418 

Shiloh, April 7, 1862 (Counterattack) 34188 

Shiloh, April 6, 1862; 0900 hours 34977 

Fredericksburg, December 10, 1862; Crossing  35625 

Waterloo June 18, 1815; 1000 hours 50007 

Fredericksburg, Dec. 13, 1862; 0600 hours 133451 

Waterloo June 18, 1815; 1600 hours 139848 

Kasserine Pass, February 19, 1943  262357 

  
Table 2. Anchored Flank Values returned by TIGER anal-

ysis of 15 tactical situations from the West Point Atlas. 
Tactical  
Situation: 

Value: Overlapping 
ROIs 

NumCrossed 
/ BLUEFOR 

Analysis: 

Kasserine Pass, 
February 14, 
1943  

0 FALSE 0/3 Neither 
Flank 
Anchored 

Shiloh, April 6, 
1862; 0900 
hours 

0 FALSE 0/9 Neither 
Flank 
Anchored 

Shiloh, April 7, 
1862 (Counterat-
tack) 

0 FALSE 0/9 Neither 
Flank 
Anchored 

Gettysburg, July 
1, 1863; 14:30 
hours 

0 FALSE 0/10 Neither 
Flank 
Anchored 

Shiloh, April 6, 
1862; 1200 
hours 

0 FALSE 0/9 Neither 
Flank 
Anchored 

Kasserine Pass, 
February 19, 
1943  

0 FALSE 0/3 Neither 
Flank 
Anchored 

Waterloo June 
18, 1815; 1600 
hours 

0.29 FALSE 4/14 1 Flank 
Anchored 

Gettysburg, July 
3, 1863; 1200 
hours  

0.64 TRUE 14/22 1 Flank 
Anchored 

Gazala, Libya, 
27 May 1942 

0.67 TRUE 7/9 1 Flank 
Anchored 

Waterloo June 
18, 1815; 1000 
hours 

0.71 FALSE 10/14 1 Flank 
Anchored 

Waterloo June 
18; Counterat-
tack 1930 hours 

0.77 FALSE 10/13 1 Flank 
Anchored 

Fredericksburg, 
December 10, 
1862; Crossing  

1 TRUE 19/19 Both 
Flanks 
Anchored 

Fredericksburg, 
December 13, 
1862; 0600 
hours 

1 TRUE 15/15 Both 
Flanks 
Anchored 

Antietam, Sep-
tember 17, 1862; 
0600 hours 

1 TRUE 20/20 Both 
Flanks 
Anchored 

Lake Trasimene, 
217 BCE  

1 TRUE 10/10 Both 
Flanks 
Anchored 

 

Table 2. The relationship between Anchored Line Value and the 
number of BLUEFOR units that must cross an enemy ROI to reach 

the Flanking Goal Objective Point.

Table 1. Negative numbers indicate that the defender has interior 
lines; the lower the number, the greater the advantage.  



 

Table 3. Defender Avenues of Retreat as determined by 
TIGER analysis of 15 tactical situations from the West 

Point Atlas. 
Tactical Situation: Value: Choke Points: 

Gazala, Libya, 27 May 1942 0.007813 8 

Waterloo June 18; Counterattack 1930 
hours 0.007813 8 

Fredericksburg, December 10, 1862; 
Crossing  0.007813 8 

Gettysburg, July 1, 1863; 14:30 hours 0.015625 7 

Kasserine Pass, February 19, 1943  0.015625 7 

Waterloo June 18, 1815; 1600 hours 0.015625 7 

Gettysburg, July 3, 1863; 1200 hours  0.015625 7 

Waterloo June 18, 1815; 1000 hours 0.015625 7 

Fredericksburg, December 13, 1862 0.015625 7 

Kasserine Pass, February 14, 1943  0.0625 5 

Shiloh, April 7, 1862 (Counterattack) 0.0625 5 

Shiloh, April 6, 1862; 0900 hours 0.5 2 

Shiloh, April 6, 1862; 1200 hours 0.5 2 

Antietam, September 17, 1862; 0600 1 1 

Lake Trasimene, 217 BCE  1 1 

 
 
 

Table 4. Attacker Avenues of Attack (or Avenues of Ap-
proach) as determined by TIGER analysis of 15 tactical 

situations from the West Point Atlas. 
Tactical Situation: Value: Choke Points: 

Waterloo June 18, 1815; 1600 hours 0.007813 8 

Gazala, Libya, 27 May 1942 0.007813 8 

Fredericksburg, December 13, 1862; 
0600 hours 0.007813 8 

Antietam, September 17, 1862; 0600 
hours 0.007813 8 

Gettysburg, July 1, 1863; 14:30 hours 0.015625 7 

Waterloo June 18, 1815; 1000 hours 0.015625 7 

Waterloo June 18; Counterattack 1930 
hours 0.015625 7 

Shiloh, April 6, 1862; 0900 hours 0.03125 6 

Shiloh, April 7, 1862 (Counterattack) 0.03125 6 

Shiloh, April 6, 1862; 1200 hours 0.03125 6 

Gettysburg, July 3, 1863; 1200 hours  0.03125 6 

Lake Trasimene, 217 BCE  0.03125 6 

Kasserine Pass, February 14, 1943  0.0625 5 

Kasserine Pass, February 19, 1943  0.0625 5 

Fredericksburg, December 10, 1862; 
Crossing  0.125 4 

 

 

5. Conclusions 
While the algorithms presented in this paper play a crucial 
role in our future research into the applicability of using 
ClassIT to provide important inferences about similar tac-
tical situations, we suggest that these algorithms (especially 
when combined with our previously published algorithms 
in [6]) also represent a more generally useful suite of algo-
rithms for analysis within the field of Computational Mili-
tary Reasoning or Tactical Planning. To the best of our 
knowledge algorithms for the determination of anchored 
flanks, choke points and interior lines have not been pre-
viously presented. 

These algorithms have been tested on 15 tactical situa-
tions drawn from the West Point Atlas series and we are 
confident that they will be as robust when applied to other 
tactical situations that are outside the realm of ‘historical’ 
battles. 

We are currently conducting experiments using the 
output of these algorithms as the attributes used by ClassIT 
system to classify and evaluate historical situations. We 
believe that we will need to incorporate more attributes 
than those produced by the algorithms described in this 
paper. Because we strongly agree with Cheeseman, Stutz 
and others of the importance of SME input in the validation 
of attributes used for classification we intend to conduct 
other SME surveys that we hope will identify other 
attributes to be used for the classification of tactical situa-
tions. 

We also believe that we will need to increase the num-
ber of instances (tactical situations) input into the ClassIT 
system. Currently this in arduous manual process, but we 
hope to streamline the process by adding the ability to 
TIGER to read in DTED files and automatically input 
REDFOR and BLUEFOR unit locations. 
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