

Algorithms for Generating Attribute Values for the Classification
of Tactical Situations

David Ezra Sidran
University of Iowa

Iowa City, Iowa, USA

Alberto Maria Segre
University of Iowa

Iowa City, Iowa, USA

{dsidran, segre}@cs.uiowa.edu

Keywords:

Tactical Algorithms, Anchored Flanks, Restricted Avenues of Attack, Restricted Avenues of Retreat, Interior Lines, Unsu-
pervised Machine Learning, ClassIT, Computational Military Reasoning

ABSTRACT: In this paper we describe a series of algorithms that generate real-valued attributes used to classify tactical
situations using an unsupervised machine learning system. Attributes for the classification of tactical situations include anc-
hored and unanchored flanks, choke points, restricted avenues of attack and retreat, and interior line of support.

1. Introduction.
Our research in Computational Military Tactical Planning
(as introduced by Kewley and Embrechts[1]) suggests that,
an unsupervised machine learning system (like Gennari and
Langley’s ClassIT [2]) can make reasoned inferences about
previously unseen tactical situations. What is required is an
appropriate set of attributes or features that describe signif-
icant aspects of a tactical situation and a sufficiently large
database of tactical situations. We surveyed 14 Subject
Matter Experts (SMEs) and found consistent agreement
regarding the presence of, and the ability to identify by
SMEs, certain attributes in specific tactical situations, e.g.,
Anchored Flanks, Interior Lines of Support and Restricted
Avenues of Attack and Retreat [3]. We agree with Cheese-
man and Stutz that, “a strong interaction between the dis-
covery program and the expert will be the common pattern
in Knowledge Discovery in Databases (KDD) for the fore-
seeable future, because each have complementary
strengths.” [4] We are also in agreement with Fisher who
states that, “conceptual clustering classification schemes
can be a basis for effective inference of unseen object prop-
erties.” [5]

We have previously published a series of algorithms
employed in our TIGER (Tactical Inference Generator)
test-bed program that are the ‘building blocks’ of the algo-
rithms presented in this paper [6]. In TIGER, a tactical situ-
ation is described as two sets of opposing forces (REDFOR
and BLUEFOR) within a set of two dimensional matrices
that represent terrain, elevation and topography.1 Units
have a Range of Influence (ROI) that is defined by the unit
type, terrain and line of sight [6]. Unit formations are
represented by minimum spanning trees (MSTs) that

1 Because the authors did not have access to DTED format terrain

and elevation files, we commissioned a third-party to produce
elevation, terrain and topography maps from public domain
sources including the West Point Atlas of American Wars [7,
15].

groups units into self-supporting formations [8]. The
TIGER function FindPath2, based on A* search, is a least-
weighted path algorithm that can incorporate ROI, as well
as terrain and slope, into its calculations [9]. TIGER as-
sumes that REDFOR are on the defensive and BLUEFOR
is attacking.

The ClassIT algorithm uses category utility to compute
the conditional probability (or predictability) of incorporat-
ing an instance (or in our implementation, a tactical situa-
tion) into a class [2]. The result is a clustering of instances
into like classes.

2. The Anchored Flank Algorithm
We use the following generally accepted terms:

• Flank - either end of a mobile or fortified military posi-
tion.

• Anchored (or Refused) Flank - a flank that is attached
to or protected by terrain, a body of water, or defended
fortifications.

• Unanchored (or Open) Flank - a flank that is not pro-
tected; also said to be "in the air [10].”

There was consistent agreement among our surveyed
SMEs [3] that the attribute of ‘anchored flanks’ was present
at certain Civil War battles when they were shown the ca-
nonical maps from the West Point Atlas: Antietam (Confe-
derate right and left flanks), Chancellorsville (Union left
flank), and Fredericksburg (Confederate left flank) [7].

In TIGER, the flanks of a line (or the flanking units of
a line) are defined as the two maximally separated units in

2 FindPath(u, G, B, o, W) returns an optimal path from unit u’s

current position, given G a collection of “gap edges”, B a col-
lection of “barrier edges” to o, which is an objective, given as a
location in graph coordinates and W is the unit u’s world view.
A solution path produced by FindPath must traverse at least
one of the edges given in G and none of the edges in B. The al-
gorithm was previously introduced in [6].

the MST defining a group of units).3 A prerequisite for a
line with anchored flanks (or an anchored line) is that there
must not be any ‘gaps’ in the line; that is to say, that an
anchored line must consist of a series of supporting units
that have overlapping ROI, or fields of fire [6]. Therefore,
an attacking (BLUEFOR) unit cannot navigate a path from
its current position to an appropriately selected point be-
hind an anchored line without crossing through an ROI of a
different color.

In informal terms our algorithm for determining the
presence of anchored flanks is as follows. First, determine
the spine of the MST group (see Figure 1) which is the
unique path on the edges of the MST from one flank unit to
the other flank unit. Second, determine if the spine tra-
verses an uninterrupted line of ROIs that reach from one
flank unit to the opposite flank unit. Next, locate an objec-
tive point that places the spine between the objective point
and BLUEFOR units (see Figure 1).

If a legal path can be traced from any BLUEFOR unit
to the objective point without passing through an ROI then
at least one flank is unanchored. If no legal path can be
found from any BLUEFOR unit to the objective point
without passing through an ROI then both flanks are anc-
hored. The ratio of the number of BLUEFOR units that had
to cross through a REDFOR ROI over the total number of
BLUEFOR units serves as a measure for the ‘flanking
attribute’ employed by our classification system.

3 Maximally separated can be determined by Euclidean distance,

time of travel, or by any other metric that can be used as an edge
weight. TIGER uses travel cost as determined by the unit type
indexed to terrain type and modified by the cost of the unit type
traversing the slope of the elevation. NB: The cost of a flank
unit to travel to the opposite flank unit may not be (and rarely
is) symmetrical. This is because the two flank units may be of
different unit types, may traverse different slopes, terrains, etc.

In addition to this ‘flanking attribute’ metric this algo-
rithm also produces several additional useful attributes, in
particular, whether the REDFOR line consists of an unbro-
ken chain of ROI, whether BLUEFOR units must cross
REDFOR ROI to reach the selected flanking objective
point, and a ratio of compromised to uncompromised
BLUEFOR units.

Algorithm for FlankingAttributeValue Function
// Determine if R, a set of REDFOR units, has anchored
// flanks given B, a set of BLUEFOR units. D is a distance
// threshold. W is the ‘world view’ used by FindPath.
// Matrices that represent terrain and elevation maps are
// global. Returns V, a real-valued attribute suitable for use
// within the ClassIT system.

FlankingAttributeValue (R, B, D, W)
{

// Calculate the MSTs for REDFOR and BLUEFOR
B_MST ComputeGroupsByThreshold(B,W,D)4
R_MST ComputeGroupsByNumber (R, 1)5

// Calculate ROI for REDFOR
R_ROI CalculateROI(R)6

 // Find left and right flanks of REDFOR
 l CalculateLeftFlank(R)7
 r CalculateRightFlank(R)

// Determine MST spine of R
R_Spine PlotMSTspine(R,l, r)

// Determine the center8of REDFOR
R_Center CalculateCenter(R)9

// Keep a count of how many BLUEFOR units
// have a legal path free of R_ROI to their
// respective objectives; initialize counter

4 This function groups units of the same color returning a forest of

minimum spanning trees separated at least by distance threshold
D and based on the current world view, W, which includes, e.g.
line of sight, terrain considerations, etc.(see [6]).

5 This function groups units of the same color into a fixed number
of N subgroups using edge weighting or distance; see [6]. Since
we specify only one group here, the function simply computes
the REDFOR MST.

6 Given a set of units and ROI values for each unit type the func-
tion maps the ROI into a two-dimensional matrix.

7 The algorithm for this function was published in [6]. This func-
tion returns the respective flanks (maximally separated units)
within a group, or MST.

8 The center of a group of units is the sum of the unit locations
weighted by unit’s type strength modifier multiplied by the
unit’s strength.

9 The algorithm for this function was published in [6].

Figure 1. TIGER screen shot of ‘flanking attribute’ calculations
for the battle of Antietam (September 17, 1862, 0600 hours). Note
the thick black line that represents the MST spine of REDFOR
Group 0, the extended vectors that calculate the Flanking Goal
Objective Point and BLUEFOR and REDFOR ROI (red and blue
shading). REDFOR (Confederate) has anchored flanks.

N 0

// For each BLUEFOR group, represented by an
// MST in the forest of BLUE MSTs
for each BGm in B_MST

 // Calculate center of this BLUEFOR group

B_Center CalculateCenter(BGm)

// Find first REDFOR ROI-free objective
// beyond the MST spine of R (R_Spine)
// along the ray from B_Center to R_Center
o FindOpenPoint(B_Center, R_Center,

R_Spine, R_ROI)

// For each unit in this group see if a legal path
// exists to the objective point o
for each u in BGm
 if (FindPath(u,׎,R_ROI,o,W))
 N N + 1

// Return the ratio of the number of BLUEFOR
// units with R_ROI clear paths to their respecrive
// objectives to the total number of BLUEFOR unts
return (N / |B|)
}

3. The Interior Line Algorithm
We use the following generally accepted terms:

Interior Lines – The military circumstance of either
being able to move over a shorter distance to execute
maneuvers and effect reinforcements than the enemy
or possessing a more efficient transportation method or
faster units than the enemy.
Interior Lines are defined relative to those of the
enemy; consequently they can be categorized as either
interior (shorter distance between flanks than the dis-

tance between the enemy’s flanks) or exterior (greater
distance between flanks than the enemy’s flanks [12].
There was consistent agreement among our surveyed

SMEs that the attribute of ‘interior lines’ was present at
certain Civil War battles when they were shown the canon-
ical maps from the West Point Atlas of Chancellorsville
(Confederate), Antietam (Confederate), Gettysburg (Union)
and Wilderness(Union) [3,7].

In informal terms our algorithm for determining the
presence of interior lines is as follows: First, find the left
and right flank units for REDFOR and BLUEFOR groups.
Next, find the least weighted path between the flank units
of each group using FindPath (checking in both directions
because the costs are not symmetrical due to different unit
types, terrains, slopes, etc.). Last, subtract the smallest cost
(returned by FindPath) for BLUEFOR from the smallest
cost (returned by FindPath) for REDFOR.

Algorithm for InteriorLinesValue Function

// Determine if R, a set of REDFOR units, or B, a set of
// BLUEFOR units, has the attribute of interior lines and
// return a real-valued attribute suitable for use within the
// ClassIT system. W is the ‘world view’ used by FindPath.

InteriorLinesValue (B, R, W)
{
 // Find left and right flanks of REDFOR

l CalculateLeftFlank(R)
r CalculateRightFlank(R)

// Calculate ROI for BLUEFOR
B_ROI CalculateROI(B)

// Find the path with the least cost between l and r
// (check both directions), store in B_Path
B_Path Min (FindPath (l, ׎, R_ROI, r, W),

FindPath (r, ׎, R_ROI, l, W))

// Find left and right flanks of BLUEFOR
l CalculateLeftFlank(B)
r CalculateRightFlank(B)

// Calculate ROI for REDFOR
R_ROI CalculateROI(B)

// Find the path with the least cost between l and r
// (check both directions), store in R_PATH
R_Path Min(FindPath (l, ׎, B_ROI, r, W),

FindPath (r, ׎, B_ROI, l, W))

// Subtract the minimum REDFOR path from the
// minimum BLUEFOR path and return the Interior
// Line metric
return(B_Path - R_Path)

}

Figure 2. Example of MST Spine being calculated across all
REDFOR groups at the battle of Waterloo (June 18, 1815, 1600

hours). Note: REDFOR (Anglo-Allies) have two groups; Group 1
in the east is the Prussian forces. TIGER screen shot.

If the value returned is greater than zero, then
BLUEFOR has interior lines. If the value returned is less
than zero, then REDFOR has interior lines. The greater the
absolute value of the metric, the larger the disparity be-
tween interior and exterior lines.

4. Restricted Avenue of Attack and Restricted Avenue
of Retreat Algorithms.
We use the following generally accepted terms:

• Avenue of Approach also Avenue of Attack – A
ground route of an attacking force of a given size
leading to its objective or to key terrain in its path
[13].

• Avenue of Retreat – the ground route of a retreat-
ing defending force.

• Choke Point - A choke point is a geographical
feature on land such as a valley or defile which an
armed force is forced to pass, sometimes on a sub-
stantially narrower front, and therefore greatly de-
creasing its combat power, in order to reach its ob-
jective [14].

There was consistent agreement among our surveyed
SMEs that the attribute of ‘restricted avenues of retreat’
and/or ‘restricted avenues of attack’ were present at certain
Civil War battles when they were shown the canonical
maps from the West Point Atlas: Chancellorsville (Union),
Antietam (Confederate), Fredericksburg (Union) and Kas-
serine Pass (Allied and Axis) [3, 7, 15].

The point (C) that REDFOR wishes to retreat to re-
quires a priori knowledge of the strategic situation which is
beyond the scope of the tactical ‘snapshot’ that is presented
to TIGER for analysis. Consequently, C, is set by an SME
(see Figure 4 for an example where C has been set as a
point on the southern bank of the Potomac River that the
Confederate army must pass through during a retreat to its
strategic base in Virginia).

 In informal terms our algorithm for determining the
presence of Restricted Avenues of Retreat for REDFOR is

as follows: an SME, using TIGER, sets the REDFOR Re-
treat Choke Point Goal (C) and TIGER calculates the
BLUEFOR ROI. Next, for each group in REDFOR, or until
FindPath returns failure, find a path from the center of the
group to C that is completely disjoint from previous
REDFOR retreat paths. The value returned, the REDFOR
Chokepoint Value (RC), corresponds roughly to a notion of
“bandwidth” to a single objective, the Choke Point Goal.
Since we are operating on a map with an overlayed square
grid, the number of disjoint access paths to a single
objective point is an integer between 0 and 8, inclusive.
Thus the RC, defined as:

ܥܴ ൌ
1

2ሺN୳୫ୠୣ୰C୦୭୩ୣP୭୧୬୲ୱ – ଵሻ
is a number in the range [0.007813,1.0], where a smaller
number means REDFOR has more avenues of retreat, and
a value of 1.0 means REDFOR has only a single avenue of
retreat (see Figure 4, below, for an example of RC = 1.0).

Algorithm for AvenuesOfRetreatValue Function

// Given R, a set of REDFOR units and B, a set of
// BLUEFOR units, calculate the number of choke points
// between R and the Choke Point Goal (C) and
// return a real-valued attribute suitable for use
// within the ClassIT system. W is the ‘world view
// used by FindPath. D is a distance threshold.

AvenuesOfRetreatValue (B, R, C, W, D)
{

// BARRIER is initialized to hold BLUEFOR ROI
BARRIER CalculateROI(B)

// Initialize N, the NumberofChokePoints
N 0

// Calculate the MSTs for REDFOR
R_MST ComputeGroupsByThreshold(R,W, D)

Figure 4. Example of REDFOR (Confederates) having a Restricted
Avenue of Retreat (marked by thick red line from Red Group 0 to
lower right hand corner of map) at the battle of Antietam (Septem-
ber 17, 1862, 0600 hours). REDFOR has only one avenue of retreat
across the Potomac to C, the Choke Point goal. TIGER screen shot.

Figure 3. Example of REDFOR (Union) having Interior Lines at
the battle of Gettysburg (July 3, 1863, 0600 hours). Note: TIGER

displays defending forces as REDFOR. TIGER screen shot.

// For each REDFOR group, represented by an
// MST in the forest of REDFOR MSTs
for each RGm in R_MST

 // Calculate center of this REDFOR group

R_Center CalculateCenter(RGm)

while(P FindPath(R_Center,׎,BARRIER,C,

W))
N N+1

BARRIER BARRIER ׫ P

// Return the REDFOR Chokepoint Value
return(1 / Power (2,N-1))

}

The algorithm for determining the presence of Re-
stricted Avenues of Attack for BLUEFOR is identical to
the algorithm for determining the presence of Restricted
Avenues of Retreat except that FindPath is called without
using enemy ROI and that the Choke Point Goal (C) is not
set by an SME; rather C is set as the center of REDFOR.

Algorithm for AvenuesOfAttackValue Function
// Given R, a set of REDFOR units and B, a set of
// BLUEFOR units, calculate the number of choke points
// between B and the Choke Point Goal (C) and
// return a real-valued attribute suitable for use
// within the ClassIT system. W is the ‘world view’
// used by FindPath. D is a distance threshold.

AvenuesOfAttackValue (B, R, C, W, D)
{

// Determine the center of REDFOR

R_Center CalculateCenter(R)

// Initialize N, the NumberofChokePoints
N 0

// BARRIER is initialized empty
BARRIER ׎

// Calculate the MSTs for BLUEFOR
B_MST ComputeGroupsByThreshold(B,W, D)

// For each BLUEFOR group, represented by an
// MST in the forest of BLUEFOR MSTs
for each BGm in B_MST

 // Calculate center of this BLUEFOR group

B_Center CalculateCenter(BGm)

while(P FindPath(B_Center,׎,BARRIER,
R_Center,W))

N N+1

BARRIER BARRIER ׫ P

// Return the BLUEFOR Chokepoint Value
return (1 / Power (2,N-1))

}

4. Results
We present, below, the results of running the above four
algorithms on fifteen historical tactical situations taken
from the West Point Atlas. [7, 15]

Figure 6. Example of BLUEFOR (Axis) having Restricted Ave-
nues of Attack (marked by thick blue lines) at the battle of Kasse-

rine Pass, February 14, 1943). Note that the black areas have great-
er slopes than the unit type (armor in this case) allows for transit.
Also, note that the slope restrictions are calculated as part of the

FindPath function and, consequently are calculated only on an ‘as
need’ basis. Mountain ranges to the west were not considered by

the function and, therefore, their slopes are not marked as impassa-
ble. TIGER screen shot.

Figure 5. Example of BLUEFOR (Union) having Restricted Ave-
nues of Attack (marked by thick blue lines from Blue Group 0 and
Blue Group 1 across the Rappahannock River via pontoon bridges)
at the battle of Fredericksburg (December 10, 1862, 0600 hours).

TIGER screen shot.

Table 1 displays the values returned by our Interior
Line Value algorithm (3, above). Negative numbers indi-
cate the presence of ‘interior lines’; positive numbers indi-
cate the presence of ‘exterior lines’, or the condition of the
attacker having shorter lines. The Union defensive line on
the third day of the battle of Gettysburg returned the lowest
value (-231,487). This was to be expected as this is the
famous ‘fish hook’ defensive line; indeed it is the canonical
example of an ‘interior line’. The Confederate defensive
line at Antietam, which was also identified by our surveyed
SMEs as an example of an interior line, also returns a nega-
tive number; though it clearly does not exhibit the condi-
tion of ‘interior lines’ as severely as the Union line on the
third day of Gettysburg.

Table 2 displays the values returned by our Anchored
Flank Algorithm (2, above). The value zero indicates that
both flanks are ‘open’ or unanchored and the value one
indicates that both flanks are anchored. The Confederate
lines at Antietam and Fredericksburg were both identified
by our surveyed SMEs as an example of anchored flanks
and our results are in agreement with the SME analysis.

Table 3 displays the values returned by our Restricted
Avenues of Retreat algorithm (4, above). The Confederate
position at Antietam was identified by our surveyed SMEs
as an example of a Restricted Avenue of Retreat and our
results are in agreement with the SME analysis (Figure 4
clearly shows the one Avenue of Retreat available to the
Confederates at Antietam).

Table 4 displays the values returned by our Restricted
Avenues of Attack algorithm (4, above). The Union posi-
tion at Fredericksburg (in which the Union forces had to
cross pontoon bridges to attack) and the German positions
at Kasserine Pass (where the Germans had to maneuver
through mountain passes to attack) were identified by our
surveyed SMEs as an example of a Restricted Avenue of
Attack or Approach and our results are in agreement with
the SME analysis. Figures 5 and 6 clearly show the Re-
stricted Avenues of Attack identified by TIGER.

Table 1. Interior Line Values returned by TIGER analy-
sis of 15 tactical situations from the West Point Atlas.

Tactical Situation: Value:

Gettysburg, July 3, 1863; 1200 hours -231497

Lake Trasimene, 217 BCE -115079

Waterloo June 18; Counterattack 1930 hours -94884

Gettysburg, July 1, 1863; 14:30 hours -92279

Gazala, Libya, 27 May 1942 -92273

Antietam, September 17, 1862; 0600 hours -54097

Kasserine Pass, February 14, 1943 -19347

Shiloh, April 6, 1862; 1200 hours 12418

Shiloh, April 7, 1862 (Counterattack) 34188

Shiloh, April 6, 1862; 0900 hours 34977

Fredericksburg, December 10, 1862; Crossing 35625

Waterloo June 18, 1815; 1000 hours 50007

Fredericksburg, Dec. 13, 1862; 0600 hours 133451

Waterloo June 18, 1815; 1600 hours 139848

Kasserine Pass, February 19, 1943 262357

Table 2. Anchored Flank Values returned by TIGER anal-

ysis of 15 tactical situations from the West Point Atlas.
Tactical
Situation:

Value: Overlapping
ROIs

NumCrossed
/ BLUEFOR

Analysis:

Kasserine Pass,
February 14,
1943

0 FALSE 0/3 Neither
Flank
Anchored

Shiloh, April 6,
1862; 0900
hours

0 FALSE 0/9 Neither
Flank
Anchored

Shiloh, April 7,
1862 (Counterat-
tack)

0 FALSE 0/9 Neither
Flank
Anchored

Gettysburg, July
1, 1863; 14:30
hours

0 FALSE 0/10 Neither
Flank
Anchored

Shiloh, April 6,
1862; 1200
hours

0 FALSE 0/9 Neither
Flank
Anchored

Kasserine Pass,
February 19,
1943

0 FALSE 0/3 Neither
Flank
Anchored

Waterloo June
18, 1815; 1600
hours

0.29 FALSE 4/14 1 Flank
Anchored

Gettysburg, July
3, 1863; 1200
hours

0.64 TRUE 14/22 1 Flank
Anchored

Gazala, Libya,
27 May 1942

0.67 TRUE 7/9 1 Flank
Anchored

Waterloo June
18, 1815; 1000
hours

0.71 FALSE 10/14 1 Flank
Anchored

Waterloo June
18; Counterat-
tack 1930 hours

0.77 FALSE 10/13 1 Flank
Anchored

Fredericksburg,
December 10,
1862; Crossing

1 TRUE 19/19 Both
Flanks
Anchored

Fredericksburg,
December 13,
1862; 0600
hours

1 TRUE 15/15 Both
Flanks
Anchored

Antietam, Sep-
tember 17, 1862;
0600 hours

1 TRUE 20/20 Both
Flanks
Anchored

Lake Trasimene,
217 BCE

1 TRUE 10/10 Both
Flanks
Anchored

Table 2. The relationship between Anchored Line Value and the
number of BLUEFOR units that must cross an enemy ROI to reach

the Flanking Goal Objective Point.

Table 1. Negative numbers indicate that the defender has interior
lines; the lower the number, the greater the advantage.

Table 3. Defender Avenues of Retreat as determined by
TIGER analysis of 15 tactical situations from the West

Point Atlas.
Tactical Situation: Value: Choke Points:

Gazala, Libya, 27 May 1942 0.007813 8

Waterloo June 18; Counterattack 1930
hours 0.007813 8

Fredericksburg, December 10, 1862;
Crossing 0.007813 8

Gettysburg, July 1, 1863; 14:30 hours 0.015625 7

Kasserine Pass, February 19, 1943 0.015625 7

Waterloo June 18, 1815; 1600 hours 0.015625 7

Gettysburg, July 3, 1863; 1200 hours 0.015625 7

Waterloo June 18, 1815; 1000 hours 0.015625 7

Fredericksburg, December 13, 1862 0.015625 7

Kasserine Pass, February 14, 1943 0.0625 5

Shiloh, April 7, 1862 (Counterattack) 0.0625 5

Shiloh, April 6, 1862; 0900 hours 0.5 2

Shiloh, April 6, 1862; 1200 hours 0.5 2

Antietam, September 17, 1862; 0600 1 1

Lake Trasimene, 217 BCE 1 1

Table 4. Attacker Avenues of Attack (or Avenues of Ap-
proach) as determined by TIGER analysis of 15 tactical

situations from the West Point Atlas.
Tactical Situation: Value: Choke Points:

Waterloo June 18, 1815; 1600 hours 0.007813 8

Gazala, Libya, 27 May 1942 0.007813 8

Fredericksburg, December 13, 1862;
0600 hours 0.007813 8

Antietam, September 17, 1862; 0600
hours 0.007813 8

Gettysburg, July 1, 1863; 14:30 hours 0.015625 7

Waterloo June 18, 1815; 1000 hours 0.015625 7

Waterloo June 18; Counterattack 1930
hours 0.015625 7

Shiloh, April 6, 1862; 0900 hours 0.03125 6

Shiloh, April 7, 1862 (Counterattack) 0.03125 6

Shiloh, April 6, 1862; 1200 hours 0.03125 6

Gettysburg, July 3, 1863; 1200 hours 0.03125 6

Lake Trasimene, 217 BCE 0.03125 6

Kasserine Pass, February 14, 1943 0.0625 5

Kasserine Pass, February 19, 1943 0.0625 5

Fredericksburg, December 10, 1862;
Crossing 0.125 4

5. Conclusions
While the algorithms presented in this paper play a crucial
role in our future research into the applicability of using
ClassIT to provide important inferences about similar tac-
tical situations, we suggest that these algorithms (especially
when combined with our previously published algorithms
in [6]) also represent a more generally useful suite of algo-
rithms for analysis within the field of Computational Mili-
tary Reasoning or Tactical Planning. To the best of our
knowledge algorithms for the determination of anchored
flanks, choke points and interior lines have not been pre-
viously presented.

These algorithms have been tested on 15 tactical situa-
tions drawn from the West Point Atlas series and we are
confident that they will be as robust when applied to other
tactical situations that are outside the realm of ‘historical’
battles.

We are currently conducting experiments using the
output of these algorithms as the attributes used by ClassIT
system to classify and evaluate historical situations. We
believe that we will need to incorporate more attributes
than those produced by the algorithms described in this
paper. Because we strongly agree with Cheeseman, Stutz
and others of the importance of SME input in the validation
of attributes used for classification we intend to conduct
other SME surveys that we hope will identify other
attributes to be used for the classification of tactical situa-
tions.

We also believe that we will need to increase the num-
ber of instances (tactical situations) input into the ClassIT
system. Currently this in arduous manual process, but we
hope to streamline the process by adding the ability to
TIGER to read in DTED files and automatically input
REDFOR and BLUEFOR unit locations.

Acknowledgements
This research was partially funded by a “seedling” grant
from DARPA administered by ISLE (Institute for the Study
of Learning and Expertise).
We would like to thank Daniel Shapiro and Frank Bosch at
ISLE and Dan Adams at Scitor Corporation.
Ralph Sharp, III of Wizard IT Services produced the topo-
graphical, elevation and terrain maps for TIGER.
We would like to thank Colonel John R. Surdu for his con-
sistent support of our research.

References
[1]. Kewley, Robert H. and Embrechts, Mark J. "Computational

Military Tactical Planning System." IEEE Transactions on
Systems, Man, and Cybernetics - Part C: Applications and
Reviews 32.2 (May 2002): 161-71.

[2]. Gennari, John H., Langley, Pat and Fisher, Doug. "Models
of Incremental Concept Formation." Artificial Intelligence
40.1 (September 1989): 11-59.

Table 4. TIGER analysis of avenues of attack of 15 histori-
cal tactical situations from the West Point Atlas.

Table 3. TIGER analysis of avenues of retreat of 15 historical tac-
tical situations from the West Point Atlas.

[3]. Sidran, David E. "Report of First Survey of Subject Matter
Experts for Dissertation Research." Dept. of Computer
Science, University of Iowa, Summer 2008.
http://www.cs.uiowa.edu/~dsidran/DP/Survey1Results.pdf.

[4]. Cheeseman, Peter and Stutz, John. "Bayesian Classification
(AutoClass): Theory and Results." 1996. Advances in
Knowledge Discovery and Data Mining. Menlo Park, CA:
American Association for Artificial Intelligence, 1996. 153-
80.

[5]. Fisher, Douglas H. "Knowledge Acquisition Via Incremen-
tal Conceptual Clustering." Machine Learning 1.2 (July
1987): 139-72.

[6]. Sidran, David E. and Segre, Alberto Maria. “Implementing
the Five Canonical Offensive Maneuvers in a CGF Envi-
ronment.” Workshop Papers. Simulation Interoperability
Workshop 1. Orlando, FL: Simulation Interoperability
Standards Organization, 2007. 159 - 166.

[7]. Esposito, Vincent J. (Editor). The West Point Atlas of Amer-
ican Wars, Volume 1 (1689-1900). New York: Frederick A.
Praeger, 1964.

[8]. Kruskal, J. B. "On the Shortest Spanning Subtree and the
Traveling Saleman Problem." Proceedings of the American
Mathematical Society 7 (1956): 48-50.

[9]. Hart, P.E., Nilsson, N.J. and Raphael, B. "A Formal
Basis for the Heurstic Determination of Minimum Cost
Paths." IEEE Transactions on Systems, Science and Cyber-
netics 4.2 (1968).

[10]. Definition of Civil War Terms. 11/26/2008
<http://www.civilwarhome.com/terms.htm>.

[11]. Bresenham, Jack E. "Algorithm for Computer Control of a
Digital Plotter." IBM Systems Journal 4.1 (1965): 25-30.

[12]. Yates, Edward. Elementary Treatise on Tactics and on Cer-
tain Parts of Strategy. London: Parker, Furnivall & Parker,
1853.

[13]. Joint Publication 1-02: Department of Defense Dictionary
of Military and Associated Terms. Washington, DC: De-
partment of Defense, 2005.

[14]. Wikipedia contributors. Choke Point. 19 November 2008.
Wikipedia, The Free Encyclopedia. 26 November 2008
<http://en.wikipedia.org/w/index.php?title=Choke_point&o
ldid=252857939>.

[15]. Esposito, Vincent J. (Editor). The West Point Atlas of Amer-
ican Wars, Volume 2 (1900-1953). New York: Frederick A.
Praeger, 1964.

Authors’ Biographies
David Ezra Sidran is a doctoral candidate in the depart-
ment of computer science at the University of Iowa (Iowa
City, IA). He received his Master of Computer Science
from the University of Iowa in 2005. He has worked as a
computer game designer since 1985, receiving two Codie
Awards from the Software Publishers Association and was
named Designer of the Year by Computer Entertainer
magazine. He has authored numerous commercial comput-
er wargames.
Alberto Maria Segre is Professor and Associate Chair of
the Computer Science Department at the University of
Iowa (Iowa City, IA) and the Gerard P. Weeg Faculty
Scholar in Informatics. He holds a B.A. in Music Theory
and a B.S., M.S. and Ph.D. in Electrical Engineering, all
from the University of Illinois at Urbana-Champaign. His
research interests focus on distributed algorithms for dis-
crete optimization problems, with emphasis on algorithmic
problems in the biological and health sciences.

